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Abstract We smdy the Horton-Strahler ordering for random binary "s, which are sntistidy 
self-similar branching shlctures. Extending previously obtained results. we show that near the 
top of these trees, the expected bifurcation ratios tend strongly twthe value 4. But at the root 
of the tree, the expected bifurcation ratio is less than 4, becoming asymptotically a periodic 
function of log,n. 

~~ 

1. Introduction 

The abundance in nature of branching structures has led to extensive studies of their 
properties. Trees, river networks, and patterns of electric discharge and electrochemical 
deposition are examples of such structures. Branching processes in chemistry and physics, 
the hierachical structure of pure states in spin glasses, and the classification of species in 
biology, can be represented as trees as well. Since the advent of digital computers, b i n e  
trees have also been studied in ,this context. The inherent randomness aften apparent in 
tree-like structures has raised the question of the role it plays in determining their form. 
This random component may lead to universal features of such branching structures. 

One of the simplest models of random branching is the random binary tree. Consider 
the ensemble of all distinct rooted binary trees of a given magnitude {number of sources, or 
leaves). Figure 1 shows all five distinct binary trees of  magnitude 4. Assigning the same 
statistical weight to all trees of magnitude IZ defines the random binary tree model. Many 
statistical properties of this ensemble can be calculated due to the fact that any binary tree 
of magnitude n is uniquely decomposed into its two main sub-branches of magnitudes k 
and n - k .  

An interesting property of a branching structure has to do with its complexity. In his 
study of  river networks, Horton [l] devised a scheme for indexing the hierarchical structure 
of the streams. Streams starting from the sources of a river network are assigned the lowest 
order and, moving downstream, a confluence of streams raises the order of the resulting 
stream. Strahler [2] slightly modified this ordering scheme, to make it independent of mehic 
or directional properties of the streams. Either scheme applies to all tree-like structures. 
This work uses the latter of these ordering schemes. In the context of trees, we shall use the 
terms leaj branch and root instead of the corresponding terms for river networks: source. 
stream and outlet. 

(i) Each leaf is assigned the order i = 1. 
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Given a rooted tree structure, Strahler orders the branches recursively: 
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Figure 1. AU five distinct binary Wets of magnitude 4 

(ii) The order i of a subsequent branch is determined by the orders il, iz of its two sub- 
branches: if il # iz then i = max(i1, iz}; otherwise i = il + 1. 
When the order of a branch is equal to that of one of its sub-branches, it is considered 

to be a continuation of this branch, otherwise it is considered a new branch. The order of 
the whole tree is defined to be the order of the root, its lowest-lying branch; it is a measure 
of the complexity of the tree. When a branch has more than two sub-branches, only the 
two of highest orders are considered. 

Consider the number of branches Ni of given Strahler order i in a tree (the stream 
number of order i). NI is equal to the number of leaves. If I is the order of the whole tree 
(i.e. of its root) then NI = 1. In figure 1, the first four trees have four branches of order 
1 and one of order 2, while the last tree has four branches of order 1, two of order 2, and 
one of order 3. 

The bifurcation ratio Bj of branches of order i and i + 1 is defined by 

Bi Ni ,IN;.+, . (1) 

Studies of river networks show that in many cases, the stream numbers ( N i }  are very well 
approximated by a geometric series, such that 

Bi % B for all i . (2) 

The observed values of B for different river networks vary between 3 and 5. As shown 
in [3], a constant bifurcation ratio is a typical property of self-similar tree shuctures. 

Shreve [4] was first to use random binary trees as a model for river networks. Studying 
the Strahler ordering in this model, he found empirically that the bifurcation ratios tend 
asymptotically to 4. He also noted that the typical order of a tree of magnitude n was very 
close to 

Itfl = [log4n] . (3) 

These findings were later substantiated by analytical studies of random binary trees by 
Kemp [SI, Flajolet et al [6] and Meir et nl [7]. They found that the expected order of a 
tree I ( n )  is equal to log,n plus a periodic function of log.,n. Moon [8] had shown that 
the ratio of the expectation values of successive stream numbers tended to 4. Wang and 
Waymire [9] have demonstrated recently that the first bifurcation ratio BI  tends to 4 in  a 
stronger sense. 

This paper presents some new results concerning the Strahler ordering of random binary 
trees. Section 2 extends [9], by evaluating the distributions of bifurcation ratios for higher 
orders. We show that Bz also tends strongly to the value 4. While it seems that the 
bifurcation ratio Bi does tend to 4 asymptotically as long as i (< Itypr this is not the case 
when the order i is close to the order of the tree. In section 3 we specifically calculate the 
expected bifurcation ratio at the root BI(= NI-!). It is found to be less than 4, becoming 
asymptotically a periodic function of log,n. 
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2. Bifurcation ratios near the top of the tree 

2.1. Preliminaries 

Denote by si(??, k )  the number of trees of n leaves with k branches of order i .  This number 
may be calculated recursively by decomposing a binary tree into its two main sub-branches. 
In general, the number of branches of order i in the whole tree is the sum of the numbers 
of such branches in its two sub-branches. 

For n = 1 one has 

For n >, 2 

(5) 

where Bi,z = 1 if i 2 2, otherwise it is equal to 0. When i > 2, one has to take into account 
the occurence of two sub-branches of order i - 1 which results in a tree of order i .  

Let us introduce the generating functions 

the solution of which is 

1 - ( 1  - 4xy) I / *  
= C(xy)  . 

2 S l ( Y , X )  = 

This yields C,, the total number of trees of magnitude n 

1 271-1 
G=-( 2n - 1 ) 

the well known result of Cayley [lo], and the distribution of branches of order 1 

S I ( ~ L  k) = Cn8n.k  . (13) 



288 Iddo Yekutieli et a! 

For i 2 2, one finds 

(14) 
2 s ~ ( Y , x ) = Y  + [ s i ( ~ , x ) I ~ + ( x - - ) [ ~ i - l ( ~ ) I  . 

The two supplementary generating functions Qdy) and R i b )  obey the following 
recursion relations: 

A tree with no branches of order i has either 0 or 1 streams of order i - 1, therefore 

si(n,O) =si-~(n,O)+si-l(n, 1). (17) 

This implies a relation for the generating functions of order i 

Qib) = Q~-I(Y) + Ri-l(y) 
in terms of the generating functions of the previous order. 

2.2. Calculation of BI 

For i = 2 we calculate 

A Taylor expansion in x and y of (19) gives the distribution sz(n, k) .  This expansion is 
convergent as long as y < $. This does not hamper us, as we are interested in the limit 
y + 0 when extracting the distributions si@, k)  from the generating functions. 

For 1 < k 6 ln/2J, we find 

There are no trees with more than ln/2J second-order branches. This is because a pair of 
first-order branches is needed to create a second-order branch. 

We define the probability pi(n, k )  of finding a tree of n leaves with k branches of order 
i by p i (n ,k )  =si(??, k) /C , .  Fori =-2, 

For large n, and k of the order of n, we simplify (21) using the Stirling formula 

For large n, the distribution pZ(n, k) tends to a normal distribution, with mean n/4 and 
variance n/16. This shows that the, bifurcation ratio 51 tends asymptotically to 4. This 
result may also be found directly by calculating the moments of the distribution sz(n, k)  
directly from the generating function (19), as was done in [9]. 
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2.3. Calculation of BZ 

The generating function for n = 3 is 

The distribution s3(n, k ) ,  for 1 6 k < Ln/41, is given by 

(24) 

Again, there are no trees with more than lnl41 thud-order branches, as a pair of second- 
order branches is needed to form a third-order branch. 

We have also calculated the first two moments with respect to k of this distribution 

2m (n - m - 5)(n - m - 6)(n - m - 7)(2m + 1)2n-m-8 n-8 

ppl(n) = lll=O ( m )  3 

A numerical study of (25), (26) shows that, asymptotically, 

so that the bifurcation ratio BZ also tends strongly to 4 for large n. 

2.4. Calculation of higher orders 

For higher orders, the direct calculation of the distributions sf (n. k ) ,  as well as their moments, 
becomes impossible practically. Yet it is still possible to find the asymptotic behaviour of 
the first moments, for large n, from (14). 

For this we use the solution for Ri(y) found in [5-7] 

where 

C(Y)  8(y) = -iln - y w  ' 

It is seen to be the solution by rewriting (16) using (18) and the trigonometric identity 
cos(2q5) = 2COS2(q5) - 1 .  

With this result at hand, we can now solve for S i ( y , x )  from (14) 
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The first moment with respect to k of this distribution is 

2 

Let us now inspect the expression for Mz(y). which is easily found from (19) 

Mz(y) = yZ(1 - 4y)-'/2. (33) 

This function has a singularity at y = 4. The expansion of this function around y = 0 is 

2 n - 4  
n - 2  n=2 

For large n the terms of the expansion behave as 

The radius of convergence of this series is $, as expected. 
It is possible to extract the asymptotic behaviour of pi'I(n) by studying the singular 

behaviour of the functions Mi ( y )  in the vicinity of y = (as is done, for example, in [I I]). 
The generating functions Mify) given in (32) all display the same singularity at y = a. We 
set 

1 - 6  y = -  
4 '  

To find the behaviour of Mi(y) in the vicinity of this singularity, we note that for S << I 

Expanding the sine functions, we can immediately write 

M, f4-i,5-112, (37) 

The ratios between the singular parts of the moments Mi(y) in the vicinity of y = will 
yield the ratios of the expected stream numbers of successive Strahler orders. It is seen 
directly that 
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Note that for S << 1, 

M2(y)  N $&-'I2 

On the other hand, the series expansion (34) may be approximad as 

The moral of this short exercise is that for 6 << 1 and n >> 1 

n - 8 - l .  (39) 

The previous analysis holds only for values of i such that 12'-'el <( 1, in order to be 
able to expand the term sin(2'-'6') in (32). By (36) and (39), this condition is equivalent to 

i < l f l o g , n .  (40) 

Not surprisingly, Ztyp = 1 + Llog,nJ is the typical value of the order of a tree of n leaves, 
in the limit of large n [5-71. 

Although we have only shown that for any fixed order i the ratios of expected stream 
numbers tend to the value 4, it reasonable to assume that these ratios tend to this value in 
a stricter sense, as is the case for i = 2,3. This will be true for any value of i sufficiently 
small, complying with (40). This property will break down near the root of a tree, and we 
expect the bifurcation ratio at the root of a random binary tree to be different from 4. 

3. Bifurcation ratio at the root 

Let us denote by ti(& k )  the number of trees with n leaves with a root of order i having k 
branches of order i - 1. Evidently, summing t i(n,  k )  over k gives si@, 1). In analogy to 
(5) one can write a recursion relation for k )  by decomposing a tree into its two main 
sub-branches. We find the following relation 

t ; ( n , k )  = 2 C { t j ( m , k ) s i _ l ( n  - m . O ) + t i ( m , k -  l ) s i - ~ ( n - m . l ) )  
*-I 

m=l 

with boundary conditions 

(41) 

(42) t , (n ,  0)  = ti(n, 1) = 0 for all n > 2 
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I I I I 

Figure 2. The expectation value and variance of the bifurcation ratio at the root of a nndom 
binary tree, as a function of n,  calculated numerically from (41x43). 

and initial conditions, for n = 1, 

t i (1 ,  k )  8i.18k.O. (43) 

For any given value of n, k is bounded between 2 (the minimal number of branches of 
order I - 1 needed to form a branch of order I )  and n - 2 (for a tree of order 2 with the 
form of a comb). 

One can now proceed in the manner used earlier, and define the generating function 

c o n  

~ ( y ,  x )  = CCti(n, k ) y " x k .  
n=l k=1 

This generating function obeys the equation 

where Ri(y)  and Q i ( y )  are defined in (7),(8). In principle, one may now use the solution 
for R i ( y )  in order to obtain an expression for T&,x). We have not been able to extract 
information froni'this solution. Instead, we solved the recursion relation (41) numerically. 
Using this solution, we calculated the expected value of k ,  the bifurcation ratio at the root 

and its variance, both of which are found to be of order 1. Figure 2 shows the mean 
and variance of the bifurcation ratio at the root, as a function of log,n. B,-l(n) tends 
asymptotically to a periodic function with a mean value of 3.34 and of  amplitude 0.19. The 
bifurcation ratio at the root is therefore always less than 4. The variance is also a periodic 
function of log,n, with an average value of 1.54. Such a periodicity is not surprising, as it 
is also seen in the expected order of a tree of magnitude n. 
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4. Conclusion 

Random binary trees are an interesting example of a random branching structure, as it is 
possible to calculate analytically many of their statistical properties. This paper focused 
on the Horton-Stmhler ordering of these trees. We have shown that in order to observe 
the asyptotically self-similar behaviour of the topological structure of these trees, one has 
to satisfy conditions similar to those required with respect to the metric properties of self- 
similar objects. One has to go to large system sizes (the magnitude of the trees tending to 
infinity), and stay far from the cut-off scales (the root of the tree). 
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